

Flow Divider

Bi-directional Series MTDA

- Robust, simple and reliable
- Easy to service
- Flows can be split or merged with accuracy (divide/combine functions).
- The flow division ratio can be altered to suit customer requirements.

1 Description

1.1 General

Series MTDA units are flow dividing valves that operate automatically. They are intended for use with hydraulic fluids. They divide a flow, the total rate of which may be va-ried, into two usually equal parts. When flow passes through a valve in the opposite direction, the two part-flows are combined into one single flow (added). The dividing and combining functions are largely independent of the pressures of the two divided flows and of the fluid viscosity. If the valve has an unequal division ratio, the larger part-flow must always

1.2 Application examples

- Work access platforms
- Lifting platform
- Harvesters
- Municipal equipment

2 Symbols

be through port B. In order for the valve to work properly, a continuous flow is required at all ports. For example, if one actuator is no longer able to move, then the other part-flow will also be restricted. If the two actuators served by the flow divider operate at different pressures, then the pressure of the total flow entering the valve will correspond to the higher of the two actuator pressures. Large pressure differences may give rise to significant heat generation, which must be taken into consideration when designing the system.

- Snow/ice clearing equipment
- Wood chippers
- Raod rollers
- Tail lifts

3 Technical data

General characteristics	Description, value, unit
Maximum operating pressure	315 bar
Oil temperature range	-20 °C +80 °C
Viscosity range	10 mm ^{2/s} 300 mm ^{2/s}
Minimum fluid cleanliness	ISO 4406 class 20/18/15 (NAS 1638 class 9)
Nitrile seals	NBR (Nitril-Butadin-Kautschuk)

4 Characteristic curves

4.1 Pressure drop characteristics (Δp)

Pressure drop v. flow rate with oil viscosity of $35 \text{ mm}^2/\text{s}$

4.2 Division accuracy [%]

Division accuracy + 3 % of the max. flow rate, based on control flow range of the respective flow divider (see example abs. 6) with oil viscosity of 35 mm²/s

IMPORTANT: - Q_{zu} = really inlet flow (100% = maximum control flow) - Higher division accuracy on enquiry

5 Dimensions in mm

5.1 MTDA08

	MTDA08	MTDA16			
Weights	1,5 kg	8 kg			
A, B, P	see section 6				

5.2 MTDA16

52

80

6 Ordering code

			MTD	A 0	8 - 0	0 4	M 3	0 /	
Flow divider									
Bi-directional									
Threaded ports									
Nominal size 08 16									
Control flow range:					_				
Nominal Siz	ze 08		Nominal Siz	e 16					
004 = 2-4 l/min	025 = 12-25 l/min		100 = 35-10	00 l/min					
006 = 3-6 l/min	032 = 16-32 l/min		120 = 40-12	20 l/min					
008 = 4-8 l/min	050 = 25-50 l/min		160 = 50-16	60 l/min					
012 = 6-12 l/min	075 = 37-75 l/min		200 = 60-20	00 l/min					
016 = 8-16 l/min	100 = 50-100 l/min		250 = 75-25	50 l/min					
Port threads	M = Metric	:	R = 1	Inch					
Flow range	P	A + B	Р	А	+ B				
004-025	M18 x 1,5	M18 x 1,5	G 3/8	8" G	3/8"				
032-100	M22 x 1,5	M18 x 1,5	G 1/2	2" G	3/8"				
100-120	M27 x 2	M22 x 1,5	G 3/4	4" G	1/2"				
160-250	M33 x 2	M27 x 2	G 1"	G	3/4"				
Division ratio, see section	6.1]		
Variants / special features	(to be inserted by the	he factory)							

6.1 Unequal division on enquiry

In the case of unequal division, the division ratio is shown in the flow divider model code

e.g. 13 = 1:1,320 = 1:230 = 1:3

Ordering example:

Flow range: Q_{zu} 60 l/min with unequal division of 1 : 3

Flow divider: MTDA08-075M30

At an inlet flow rate of 60 l/min the unequal division prod. : 15 l/min at port A and 45 l/min at port B $\,$

6.2 Example for division accuracy

Flow range: Q_{zu} 60 l/min, required division of QA/QB = 30 l/min (division 1 : 1)

Flow divider:

MTDA08-075M flow range 37...75 l/min

max. flow rate 75 l/min

max. allowable deviation = 75 l/min x \pm 3% = \pm 2,25 l/min

resulting part- flow rate at Q_{zu} 60 l/min: Port A - Q_{min} = 27,75 l/min / Q_{max} = 32,25 l/min Port B - Q_{min} = 27,75 l/min / Q_{max} = 32,25 l/min

7 End-stop synchronisation of parallel-connected cylinders

When one of the two cylinders reaches its end-stop, the flow to the other cylinder drops to approx. 5-10% of its nominal rate. This leakage flow enables the second cylinder, which has not yet reached its final position, to slowly resynchronise itself. To enable full-speed resynchronisation of the lagging cylinder, each actuator line from the flow divider must be equipped with a pressure relief valve.

8 Installation attitude and mounting

To prevent the weight of the spool causing division inaccuracies, the valve must be installed so that the spool axis is horizontal. When mounting the valve, make sure that the body is not subjected to any distorting forces. Do not use tapered-thread pipe fittings.

9 Fluid cleanliness

MTDA flow divider require fluid with a minimum cleanliness level of NAS 1638, Class 9 or ISO 4406, code 20/18/15.

HLP hydraulic oils to DIN 51524, Part 2, can be used without any special restriction as long as they remain within the specified temperature and viscosity ranges. HFC fire-resistant fluids to DIN 51502 can be used. Note that all fire-resistant fluids require special versions of the valves and must be approved by Bucher Hydraulics. We recommend the use of fluids that contain anti-wear additives for mixed-friction operating conditions. Fluids without appropriate additives can reduce the service life of pumps and motors. The user is responsible for maintaining, and regularly checking, the fluid quality. Bucher Hydraulics recommends a load capacity of \geq 30 N/mm² to Brugger DIN 51347-2.

10 Fluid cleanliness

Cleanliness class (RK) onto ISO 4406 and NAS 1638

Code ISO 4406	Number of particles / 100 ml								
	\leq 4 μ m	$\leq 4 \ \mu m$ $\leq 6 \ \mu m$ $\leq 14 \ \mu m$							
23/21/18	8000000	2000000	250000	12					
22/20/18	4000000	1000000	250000	-					
22/20/17	4000000	1000000	130000	11					
22/20/16	4000000	1000000	64000	-					
21/19/16	2000000	500000	64000	10					
20/18/15	1000000	250000	32000	9					
19/17/14	500000	130000	16000	8					
18/16/13	250000	64000	8000	7					
17/15/12	130000	32000	4000	6					
16/14/12	64000	16000	4000	-					
16/14/11	64000	16000	2000	5					
15/13/10	32000	8000	1000	4					
14/12/9	16000	4000	500	3					
13/11/8	8000	2000	250	2					

info.kl@bucherhydraulics.com

© 2016 by Bucher Hydraulics GmbH, D-79771 Klettgau

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 430.310.335.310.

www.bucherhydraulics.com

Flow divider with very high division accuracy Series MTDA08HG

• division accuracy 1,5% based on operating flow range

- standard-supply zinc-nickel coating
- robust, simple and reliable
- easy to service
- flows can be split or merged with accuracy (divide/combine functions).

1 Description

1.1 General

MTDA08HG is a flow divider with very high division accuracy and a large operating flow range. With this new valve, division accuracy is specified in relation to the supply flow rate and not, as is usual in the market, to the nominal flow rate (see chart).

Another notable feature is the standard-supply zinc-nickel coating, with a corrosion-resistance of over 720 hours of salt-spray test, DIN EN ISO 9227. They divide a flow into two usually equal parts (1:1). When flow passes through valve in the opposite direction, the two part-flows are combined into one single flow (added). The dividing and combining functions are largely independent of the pressures of the two divided flows and of the fluid viscosity.

1.2 Application examples

- Work access platforms
- Lifting platform
- Car transporter
- Hydraulic plattform
- Hydraulic ramp
- Hydraulic door drive

2 Symbols

3 Technical data

General characteristics	Unit	Description, value
Maximum pressure	bar	250 continuous, 315 peak pressure
Control flow range	l/min	16 , 25 , 32 und 50
Division accuracy in control flow range	%	1,5 with maximum loading difference $P_A:P_B = 200$ bar and spool axis is horizontal
Oil temperature range	°C	-20 +80
Viscosity range	mm²/s	10 250
Oil cleanliness		minimum class 9 of NAS 2638 or class 19/17/14 of ISO 4406
Seals		(NBR) Nitrile Butadiene Rubber
Weight	kg	ca. 2,2
Port threads	A, B, P	G ¾" , DIN EN ISO 9974-1
Salt spray test		Corrosion resistant >720 hours

4 Characteristic curves

4.1 Division accuracy [%]

with oil viscosity of 35 mm²/s

1	MTDA08HG (high-precision) based on opera- ting flow range
2	MTDA08 standard based on operating flow range
3	MTDA08 standard +/- 3 % based on nominal flow range

4.2 Pressure drop characteristics (Δ)

Pressure drop v. flow rate with oil viscosity of 35 mm²/s

1	Control flow range = 5 - 15 l/min
2	Control flow range = 7,5 - 25 l/min
3	Control flow range = 10 - 32 l/min
4	Control flow range = 15 - 50 l/min

5 Dimensions

6 Ordering code

			[M ₁ T	D	A 0	8 H	G -	R
Flow divider									
Bi-directional									
Threaded ports									
Nominal size									
High precision									
Control flow range	5-16 l/min 7,5-25 l/min 10-32 l/min 15-50 l/min	= = =	016 025 032 050						
Port threads	A, B and P =	G3/8'	' , DIN EN	ISO 99	974-1				

7 Installation and mounting

To prevent the weight of the spool causing division inaccuracies, the valve must be installed so that the spool axis is horizontal. Do not use tapered-thread pipe fittings.

To prevent distortion of the body and the spool-binding that this might cause, it is advisable to place flat washers under the body when mounting it, or under the first body and between the individual bodies when gang-mounting several valves.

8 Fluid

MTDA08HG Flow divider require fluid with a minimum cleanliness level of NAS 1638, Class 8 or ISO 4406, code 19/17/14.

We recommend the use of fluids that contain anti-wear additives for mixed-friction operating conditions. Fluids without appropriate additives can reduce the service life of pumps and motors. The user is responsible for maintaining, and regularly checking the fluid quality.

9 Fluid cleanliness class

Cleanliness class (RK) onto ISO 4406 and NAS 1638

Code ISO 4406	Number of particles / 100 ml							
	\leq 4 μ m	\leq 6 μ m	\leq 14 μ m	NAS 1638				
23/21/18	8000000	2000000	250000	12				
22/20/18	4000000	1000000	250000	-				
22/20/17	4000000	1000000	130000	11				
22/20/16	4000000	1000000	64000	-				
21/19/16	2000000	500000	64000	10				
20/18/15	1000000	250000	32000	9				
19/17/14	500000	130000	16000	8				
18/16/13	250000	64000	8000	7				
17/15/12	130000	32000	4000	6				
16/14/12	64000	16000	4000	-				
16/14/11	64000	16000	2000	5				
15/13/10	32000	8000	1000	4				
14/12/9	16000	4000	500	3				
13/11/8	8000	2000	250	2				

info.kl@bucherhydraulics.com

www.bucherhydraulics.com

© 2016 by Bucher Hydraulics GmbH, D-79771 Klettgau

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 430.310.335.310.

High Pressure Flow Divider

420 bar, 250 l/min Series MTDA..HD

- these valves do not require maintenance.
- flows can be split or merged with accuracy (divide/combine functions).
- Functions: decompression orifice
 - make-up valves
 - Crossline relief valve

1 Description

Series MTDA..HD units are flow dividing valves that operate automatically. They are intended for use with hydraulic fluids. They divide a flow into two parts. When flow passes through a valve in the opposite direction, the two part-flows are combined into one single flow (added). The dividing and combining functions are largely independent of the pressures of the two divided flows and of the fluid viscosity. In order for the valve to work properly, a continuous flow is required at all ports. For example, if one actuator is no longer able to move, then the other part-flow will also be restricted. If the two actuators served by the flow divider operate at different pressures, then the pressure of the total flow entering the valve will correspond to the higher of the two actuator pressures.

2 Symbols

Standard Function "H"

Function "N" with anti - cavitation check valve

Funktion "P" with crossline relief valve

3 Technical data

General characteristics	Unit	Description, value
Maximum operating pressure	bar	420
Oil temperature range	°C	-20 +80
Viscosity range	mm²/s	10 300
Maximum admissible level of contamination of the hydraulic fluid		ISO 4406 class 20/18/15 (NAS 1638 class 9), achievable with a filter rating of $\beta_{10} \ge 75$
Nitrile seals		NBR

4 Characteristic curves

4.1 Pressure drop characteristics

Pressure drop v. flow rate with oil viscosity of 35 mm²/s (Q_{Zu} 100% = Q_{Nenn})

4.2.1 Anti-shock valve

Q [l/min] = flow rate from actuator to tank Δp [bar] = pressure difference from actuator to tank

For flow rates < 60 l/min contact Bucher Hydraulics

4.2 Division accuracy

(without Decompression orifice)

Division error v. flow rate with oil viscosity of 35 mm²/s (Q_{Zu} 100% = Q_{Nenn})

IMPORTANT: Division accuracy \pm 3 % of the maximal flow rate, based on nominal volume flow range of the respective flow divider (see example abs. 6.1). For higher division accuracy contact Bucher Hydraulics.

4.2.2 Make-up valve

Q [l/min] = flow rate from tank to actuator Δp [bar] = pressure difference from tank to actuator

5 Dimensions

5.1 MTDA08HD

5.2 MTDA16HD

6 Ordering code

	M, T [D A _ H D -	G	-	P= ²⁾ D= ³⁾
Flow divider					
Bi-directional					
Threaded po	rts				
Nominal size	08 or 16				
High pressur	e				
Flow range ir	nlet flow ([/min]:				
NG 0	8	NG 16			
004 =	= 2-4 025 = 12-25	100 = 35-100			
006 =	= 3-6 032 = 16-32	120 = 40-120			
008 =	= 4-8 050 = 25-50	160 = 50-160			
012 =	= 6-12 075 = 37-75	200 = 60-200			
016 =	= 8-16 100 = 50-100	250 = 75-250			
Port threads	Size 08:	G 1/2"	= G 12		
	Size 16:	A,B,T = G 3/4" / P = G 1"	= G 34		
Options	Check valve in the T line	= R ¹⁾			
	without	= *			
Functions	Standard	= H			
	with make-up check valve	= N			
	with crossline relief valve	= P 2 ⁾			

1) Only in connection with "P" possible

2) •Pressure settings in bar available for the anti-shock valve (measured at 10 l/min test flow) 25, 32, 40, 50, 63, 80, 100, 125, 140, 160, 175, 190, 210, 230, 250, 280, 300, 330, 350, 380 (for other pressures, consult BUCHER)

3) State the diameter of the balancing orifice, if required (e.g. E 0.6 - D = 06)

6.1 Example for division accuracy

Flow range: To 60 l/min, required division of $Q_A/Q_B = 30$ l/min (division 1 : 1)

Flow divider:

MTDA08-075G12*-P flow range 37...75 l/min max. flow rate 75 l/min

7 Installation attitude and mounting

To prevent the weight of the spool causing division inaccuracies, the valve must be installed so that the spool axis is horizontal. When mounting the valve, make sure that the body is not subjected to any distorting forces. Do not use tapered-thread pipe fittings. max. allowable deviation = 75 l/min x \pm 3% = \pm 2,25 l/min

Resulting part- flow rate at Q_{Zu} 60 l/min: Port A - Q_{min} = 27,75 l/min / Q_{max} = 32,25 Port B - Q_{min} = 27,75 l/min / Q_{max} = 32,25

8 Example of use

9 Fluid

MTDA..HD flow divider require fluid with a minimum cleanliness level of NAS 1638, Class 9 or ISO 4406, code 20/18/15.

HLP hydraulic oils to DIN 51524, Part 2, can be used without any special restriction as long as they remain within the specified temperature and viscosity ranges. HFC fire-resistant fluids to DIN 51502 can be used. Note that all fire-resistant fluids require special versions of the valves and must be approved by Bucher Hydraulics. We recommend the use of fluids that contain anti-wear additives for mixed-friction operating conditions. Fluids without appropriate additives can reduce the service life of pumps and motors. The user is responsible for maintaining, and regularly checking, the fluid quality. Bucher Hydraulics recommends a load capacity of \geq 30 N/mm² to Brugger DIN 51347-2.

10 Fluid cleanliness class

Cleanliness class (RK) onto ISO 4406 and NAS 1638

Code ISO 4406	Number of particles / 100 ml							
	\leq 4 μ m	\leq 6 μ m	\leq 14 μ m	NAS 1638				
23/21/18	8000000	2000000	250000	12				
22/20/18	4000000	1000000	250000	-				
22/20/17	4000000	1000000	130000	11				
22/20/16	4000000	1000000	64000	-				
21/19/16	2000000	500000	64000	10				
20/18/15	1000000	250000	32000	9				
19/17/14	500000	130000	16000	8				
18/16/13	250000	64000	8000	7				
17/15/12	130000	32000	4000	6				
16/14/12	64000	16000	4000	-				
16/14/11	64000	16000	2000	5				
15/13/10	32000	8000	1000	4				
14/12/9	16000	4000	500	3				
13/11/8	8000	2000	250	2				

info.kl@bucherhydraulics.com

www.bucherhydraulics.com

© 2015 by Bucher Hydraulics GmbH, D-79771 Klettgau

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 430.310.335.375.000

Internal Gear Flow Divider

Series QXT

- · extremely high division accuracy
- exceptionally quiet operation
- negligible pressure pulsations
- long service life
- high efficiency, since operating principle ensures there are no throttling losses
- wide range of outlet flows are available
- suitable for special fluids such as HFC, environmentally friendly and low viscosity fluids

be used to produce pressure intensification i.e. the outlet

pressure from the flow divider is higher than its inlet pres-

sure. This takes place at high efficiency, since the operating

principle ensures that the only losses that can possibly oc-

cur are proportional to the pressure difference across the

unit. The unit is based on the well-known QX internal gear

pump, which is distinguished by its very low noise levels and al-most imperceptible pressure pulsations. The large num-

ber of closely spaced sizes ensures that the right size is al-

1 General

1.1 Product description

Series QXT flow dividers are internal gear units that can divide a flow into as many as four portions. The division ratios are constant and are unaffected by the loads at the actuators. They can be used, for example, to provide synchronised movement of unequally loaded cylinders. Several hydraulic motors can be driven at the same speed, irrespective of their external loads. Since they operate on the principle of the rotating internal gear set, these flow dividers work without any throttling losses, which is in strong contrast to spool-type flow dividers. The QXT flow divider can also

1.2 Application examples

- Air conditioning Systems
- Track laying machinery

2 Symbol

Waste compactors

ways available for every application.

· Hydraulic presses

3 Technical data

Characteristics	Unit	Description, value
Installation attitude		unrestricted
Hydraulic fluid		HLP mineral oils to DIN 51524, Part 2 HFB, HFD and HFC fluids to VDMA 24317 other fluids - contact Bucher Hydraulics
Max admissible level of contamination of the hydraulic fluid		ISO 4406 class 20/18/15, or NAS 1638 class 9

Operating viscosity Starting viscosity	mm²/s	10 10010 300(higher values, contact Bucher Hydraulics)
Hydraulic fluid temperature	°C	HLP mineral oil - 80 max. HFB, HFD and HFC 50 max.

3.1 Flow dividers with outlet flows of equal sizes

These operating data are valid for mineral oils with $42 \text{ mm}^2/\text{s}$.

Please contact Bucher if you require unequal outlet flows.

				Maximum inlet flow Q _{0 max}					
Туре	Outlet displace- ment cm ³ /U	Cont./ Interm. pressure ¹⁾ bar	Speed n _{max} / n _{min} min ⁻¹	2 outlet flows I/min	3 outlet flows ²⁾ I/min	4 outlet flows ²⁾ I/min			
QXT22-005/22-005 QXT22-006/22-006 QXT22-008/22-008	5 6 8	250/320	6300/1250	63 80 100	95 120 150	125 160 200			
QXT32-012/32-012 QXT32-016/32-016	12 16	250/320	5000/1000	120 160	180 240	240 320			
QXT42-025/42-025 QXT42-032/42-025	25 32	250/320	4000/800	200 250	300 380	400 500			
QXT52-050/52-050 QXT52-063/52-063	50 63	250/320	3200/630	320 400	480 600	640 800			
QXT62-100/62-100 QXT62-125/62-125	100 125	250/320	2500/500	500 630	750 950	1000 1260			
QXT82-200/82-200 QXT82-250/82-250	200 250	250/320	2000/400	800 1000	1200 1500	1600 2000			

1) Intermittent for max. 20 sec/min but not than 10% of the duty cycle

2) for 3 and 4 outlet flow please contact Bucher Hydraulics

3.2 Choose the optimal flow divider

These operating data are valid for mineral oils with 42 mm²/s.

For the highest division accuracy as well as the lowest cost, choose the smallest possible flow divider running near its maximum speed. The speed n in rev/min is calculated from:

$$n = \frac{Q_0 \times 10^3}{V_1 + V_2 + V_3 + \dots}$$

where Q_0 = inlet flow rate in l/min and V1 = outlet displacement in cm³/rev. The minimum permissible inlet flow rate is calculated from:

$$Q_{0 \text{ min}} = \frac{n_{\text{min}}}{n_{\text{max}}} \times Q_{0 \text{ max}}$$

In the case of the flow dividers with unequal outlet displacements, use the largest displacement for determining n_{max} , the smallest for n_{min} . Since rotary flow dividers are also pressure intensifiers, each outlet circuit must be provided with a pressure relief valve. Bucher Hydraulics series VT relief valves mount directly on the flow divider and are therefore particularly suitable (please request the data sheet 100-D-402850).

4 Performance curves

These operating data are valid for mineral oils with 42 mm²/s.

Tests carried out on a QXT flow divider, type 32-016/32-016, produced the results shown below. For the same speed, larger flow dividers have a better accuracy while smaller ones display a bigger difference between the two outlet flows. The division accuracy of the outlet flows Q1 and Q2 depends mainly on the pressure difference between the two outlet lines and the ratio Q₀ / Q_{0 max} The pressure drop across the flow divider is dependent on Q₀ / Q_{0 max} Using the curves, the accuracy of flow division and the pressure drop can be optimised.

5 Dimensions

5.1 For flow divider with 2 displacements

Frame size	2	3	4	5	6	8
J2	G 1 ¹ / ₄ "	G 1 ¹ / ₂ "	2"	2"	2"	G 2 ¹ / ₂ "
	thread	thread	SAE J518 ¹⁾	SAE J518 ¹⁾	SAE J518 ¹⁾	thread
E	G ¹ / ₂ "	G ³ / ₄ "	1"	1 ¹ / ₄ "	1 ¹ / ₂ "	2"
	thread	thread	SAE J518 ¹⁾	SAE J518 ¹⁾	SAE J518 ¹⁾	SAE J518 ¹⁾
G	M8x12	M8x12	M10x16	M10x20	M16x28	M20x30
K2	102	129	159,5	190	230,5	282,5
L2	204	258	319	380	461	565
Z	50	60	62,5	78	97,5	125
Q2	67	87	110,5	127	149	178,5
Y	55	60	75	90	112	140
Т	85	107	133	177	220	275

1) for SAE J518 code 61 / ISO 6162-1 pipe flange (see section 7.2)

5.2 Frame size 2 - 3

1 Mounting threads 4 x dimensions 'G' - both ends

5.3 Frame size 4 - 6

1 Mounting threads 4 x dimensions 'G' - both ends

5.4 Frame size 8

5.5 Flow divider with 3 displacements

(please contact Bucher Hydraulics)

5.6 Flow divider with 4 displacements

(please contact Bucher Hydraulics)

6 Ordering code for 2 displacements

			$Q \mid X \mid T$	3	2 -	0	1 2]/[;	3 2	- 0	1	2	/
Series	QXT												
Frame size	2/3/4/5/6	8/8											
Pressure range 2	2												
Outlet displacement	005 - 250	(see chapter	3.1)										
Frame size	2/3/4/5/	6 / 8											
Pressure range 2	2												
Outlet displacement	005 - 250	(see chapter	3.1)										
Special features		(see section	6.2)								-		

6.1 Ordering example

For dividers with 3 outlet flows: QXT22-005 / 22-005 / 22-005 For dividers with 4 outlet flows: QXT62-100 / 62-100 / 62-100 / 62-100

6.2 Special features

- -O = without priming
- 09 = Viton seals and without priming
- 117 = port at outlet (E) in SAE J518 code 61 / ISO 6162I at assembly group 2+3

Flow divider combinations must contain the same frame sizes, pressure ranges and outlet flows.

If 3, 4 or unequal flows are required, please contact Bucher Hydraulics $% \left({{{\rm{B}}_{{\rm{B}}}} \right)$

7 Accessories

7.1 Bolt-on valves - SAE J518 code 61 / ISO 6162-1 pattern

7.1.1 Example for Bolt-on valves, mounted on QXT flow divider

IMPORTANT: For detailed informations on Bolt-on valves see www.bucherhydraulics.com

- 7.2 Pipe flange high pressure type
 - up to 420 bar
 - SAE J518 code 61 / ISO 6162-1 pattern

Threaded pipe flanges are spot-faced for pipe fittings. Material: ST37 / For Viton seals, contact Bucher Hydraulics

Ordering- number	Ordering code	Size	DØ	E	F	н	L	R	Х	Y	Viton seal 90 Shore 'A'	Retainir DIN9 ⁻	ng screws 12-12.9 M [Nm]
037000	RF 01-R08	G 1/2"	12,5	16	27	13	54	23	17,5	38	20,24x2,62	M8x30	30
037010	RF 02-R10	G 3/4"	20	18	30	12	65	26	22,2	47,6	26,65x2,62	M10x30	60
037020	RF 03-R11	G 1"	25	20	34	13	70	29	26,2	52,4	32,99x2,62	M10x35	60
037030	RF 04-R12	G 1 1/4"	32	22	38	14	80	36	30,2	58,6	40,86x3,53	M10x40	60
037040	RF 05-R13	G 1 1/2"	38	24	41	19	94	41	35,7	70	44,04x3,53	M12x45	120
037050	RF 06-R14	G 2"	50	26	45	20	102	48	42,9	77,8	59,92x3,53	M12x50	120

info.kl@bucherhydraulics.com

www.bucherhydraulics.com

 $\ensuremath{\textcircled{}^{\odot}}$ 2015 by Bucher Hydraulics GmbH, D-79771 Klettgau

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 420.245.370.